

SCICHEM for Regulatory **Modeling**

Eladio Knipping, Ph.D.

Naresh Kumar, Ph.D. Electric Power Research Institute

EPA 11th Modeling Conference August 12-13, 2015

Acknowledgements

Sage-Xator

 Biswanath Chowdhury, Douglas Henn, Stephen Parker, Steven Schneider, Ian Sykes

Ramboll Environ

 Prakash Karamchandani, Bart Brashers, Lynsey Parker, Greg Yarwood, Ralph Morris

General Overview of SCICHEM

- SCICHEM is a Lagrangian photochemical puff model with different options for gas and aerosol chemistry schemes, the most detailed of which are consistent with the mechanisms found in photochemical grid models.
- SCICHEM is able to model the dispersion of primary pollutants and the formation of secondary pollutants
 - SCICHEM can explicitly model the conversion of NO to NO₂
 - SCICHEM can be used to model ozone and secondary PM_{2.5}
 - SCICHEM can be used for near-source applications as well as longrange transport applications
 - Option to use simple chemistry for near-source applications

SCICHEM 3.0 Features

Chemistry

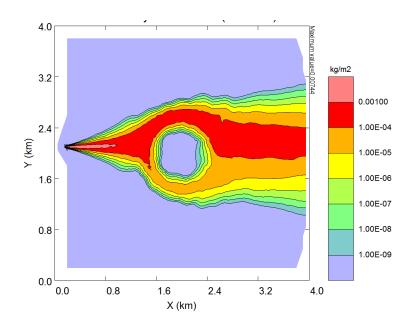
- CB05 gas-phase chemistry mechanism
- Aerosol and aqueous chemistry modules based on CMAQ 4.7.1

Dispersion

- Incorporates last 10 years of improvements in SCIPUFF (developed independently of SCICHEM)
- Source Treatment
 - Point, area, and volume sources
 - Building downwash algorithm
- Option to read input files in keyword format (similar to AERMOD inputs)
- Detailed specification of background concentrations based on photochemical grid modeling simulation

SCICHEM History

- First version developed in late 1990s
 - SCIPUFF (dispersion component) evaluated with tracer experiments and AERMOD databases
 - SCICHEM evaluated with power plant plume measurements
 - Sporadic incremental upgrades through 2010
- Major upgrade effort initiated in 2011
 - Beta 1 (for 1-hour NO₂ and SO₂) released in 2013
 - Beta 2 (for both primary and secondary impacts) released in 2014
 - Model updated to respond to beta-tester feedback and comments and include new features
 - Final version, SCICHEM 3.0, released on August 10, 2015
 - <u>http://sourceforge.net/projects/epri-dispersion/</u>

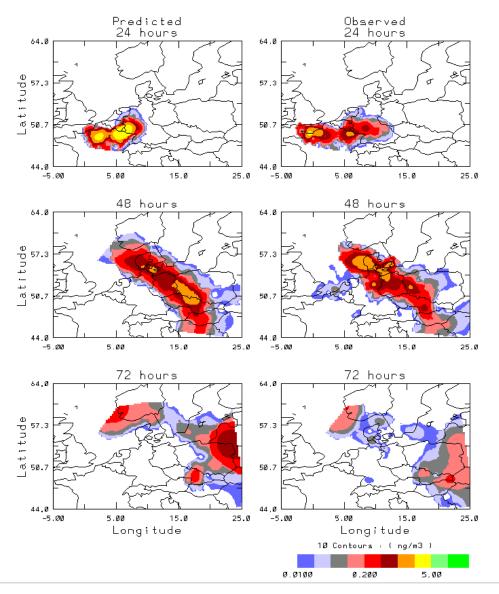

SCICHEM Evaluations

Theoretical Studies

- Buoyant plumes in shear flow
- Laboratory diffusion measurements
- Flow around a hill

Evaluation with tracer studies

- European Tracer Experiment
- AERMOD evaluation databases

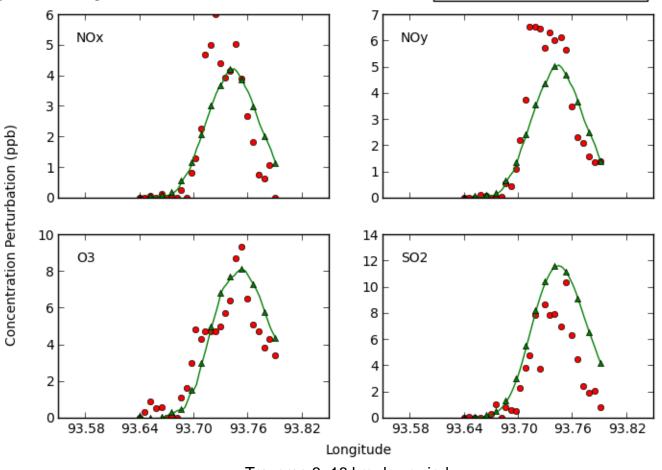


Flow around a hill

Evaluation with aircraft measurements

- TVA Cumberland power plant plume
- Dolet Hills power plant plume
- Evaluation with 2013 SENEX measurements (ongoing)
- Evaluation with SEARCH measurements (exploratory research study)

Long-Range Transport Evaluation with Tracer Studies European Tracer Experiment (ETEX) 1994



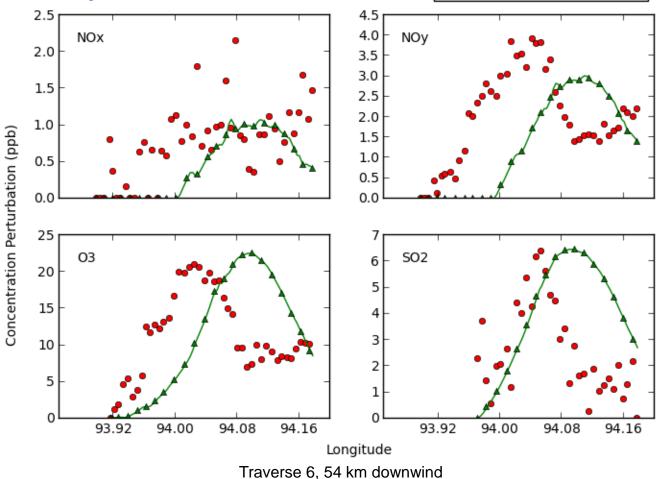
Dolet Hills, Northeast Texas Air Care (NETAC) 2005 Air

OBSERVED

▲ SCICHEM-3.0

Quality Study

Traverse 3, 18 km downwind

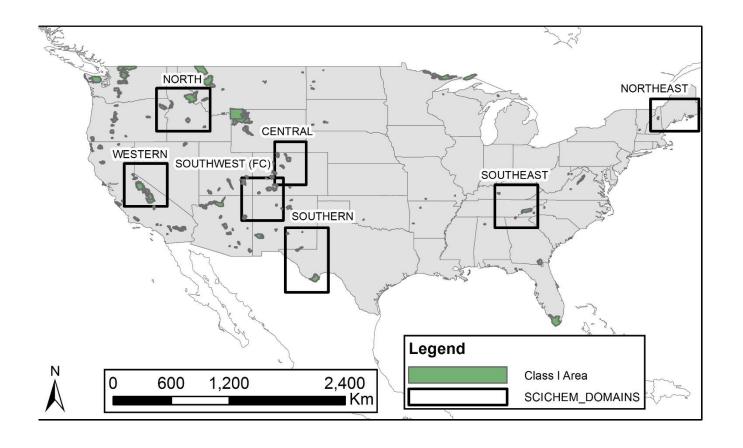

• Peaks for NO_v, SO₂ and O₃ are within 20% of observed values

Dolet Hills, Northeast Texas Air Care (NETAC) 2005 Air

OBSERVED

▲ SCICHEM-3.0

Quality Study


20 ppb peak ozone production in measurements and modeling

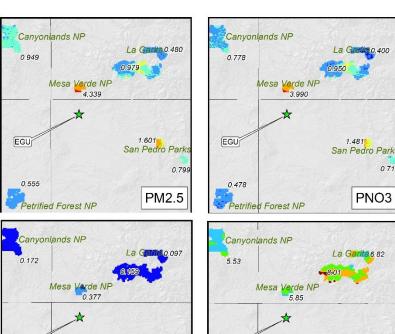
SCICHEM Model Testing (Stress Testing)

- During the beta period, comments were received that SCICHEM had not been "stress tested"
 - Questions arose whether the model could simulate a variety of conditions and sources for annual simulations
- Objectives
 - Test robustness of model for long-term (annual) applications for a range of meteorological conditions and source types
 - Demonstrate calculation of secondary impacts in Class I areas
- Hypothetical sources
 - Power plant
 - Flare with highly reactive VOC (HRVOC) emissions
 - Petrochemical complex plume
- Modeling domains
 - Several domains across the US with multiple Class I areas in the domain

Domains for Model Testing

Annual Power Plant Impacts: Four Corners Domain

EGU


0.148

75

etrified Forest NP

150

- Maximum 24-hour average PM_{2.5} impact ranges from 0.5 to 4.3 ug/m³
 - Max PM NO₃: 0.4 to 4 ug/m^3
 - Max PM SO₄: 0.1 to 0.4 ug/m^3
- 4th highest 8-hour average ozone impact ranges from 3.3 to 8 ppb

0.171 San Pedro Parks

0.119

PSO4

0.71

1.481

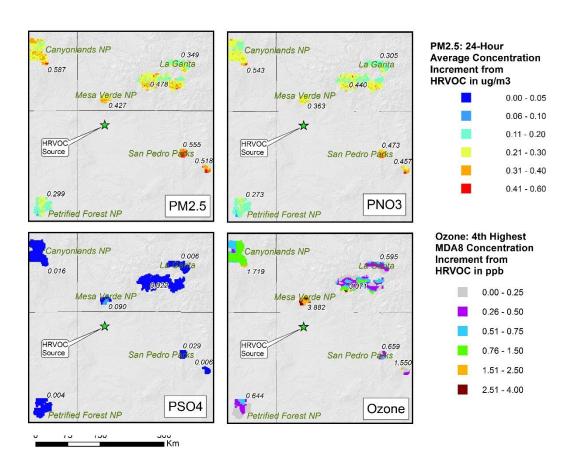
PM2.5: 24-Hour

Increment from EGU in ug/m3

Average Concentration

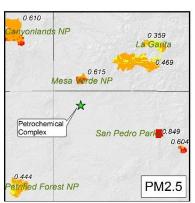
0.00 - 0.250.26 - 0.50

0.51 - 0.75

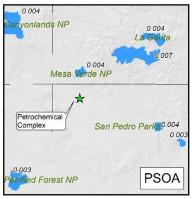

0.76 - 1.25

1.26 - 2.50

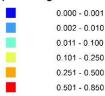
300

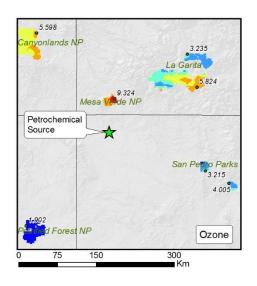

HRVOC Flare Impacts: Four Corners Domain

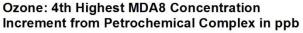
- Maximum 24-hour average PM_{2.5} impact ranges from 0.3 to 0.6 ug/m³
 - Max PM NO₃: 0.3 to 0.5 ug/m³
 - Max PM SO_4 : < 0.1 ug/m³
- 4th highest 8-hour average ozone impact ranges from 0.6 to 3.9 ppb


Petrochemical Complex PM Impacts: Four Corners Domain

- Includes small amount of SOA precursor (toluene, xylene) emissions
- Maximum 24-hour average PM_{2.5} impact ranges from 0.36 to 0.85 ug/m³
 - Max PM NO_3 : 0.32 to 0.76 ug/m³
 - Max PM SO_4 : < 0.2 ug/m³
 - Max PM SOA: 0.003 to 0.007 ug/m³




PM2.5: 24-Hour Average Concentration Increment from Petrochemical Complex in ug/m3



Petrochemical Complex Ozone Impacts

- 4th highest 8-hour average ozone impacts
 - 1.9 to 9.3 ppb

7.01 - 9.40

Summary of Stress Testing

- Annual model testing successfully conducted for selected domains and source scenarios
 - Scenarios include a power plant with NOx and SO₂ emissions, a HRVOC flare, and a petrochemical complex with VOC, NOx and SO₂ emissions
 - Runtimes for annual simulation range from 20 to 80 hours depending on the domain and source scenario (for these simulations including secondary pollutants)
 - Model is robust

SCICHEM Conclusions

- SCICHEM has been thoroughly evaluated throughout its history of development and shown to be a robust model that can handle different sources under different chemical and meteorological regimes
- SCICHEM has been demonstrated that it can be used to simulate pollutant concentrations accurately for different applications
 - Short-range SO₂ simulations
 - Short-range NO₂ simulations
 - Long-range O₃ and secondary PM_{2.5} simulations
- Representative runtimes
 - 15-30 minutes for annual SO₂ simulations
 - 20-40 minutes for annual NO₂ simulations
 - 20-80 hours for annual simulations with secondary pollutants

SCICHEM Reference

- Additional details on SCICHEM can be found in the following peer-reviewed journal publication (in addition to documentation included with the model):
- Chowdhury, B.; Karamchandani, P. K.; Sykes, R. I.; Henn, D. S.; Knipping. E., Reactive puff model SCICHEM: Model enhancements and performance studies. Atmospheric Environment. 2015, 117, 242-258.
 - Open Access Article
 - http://www.sciencedirect.com/science/article/pii/S1352231015302119

